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EXECUTIVE SUMMARY

The prediction of electromagnetic field strengths at large distances from

a radiating antenna is important to designers and users of communications

systems. Such field strengths can be greatly influenced by the variation of

the modified atmospheric refractivity M with height z. If the gradient of M

is negative over a range of z, an extreme enhancement in field strength may be

realized at large distances from the source. The layer of the atmosphere

responsible for the enhancement is known as a duct. When the ground is the

lower boundary of the ducting layer, the duct is called a surface, or ground-

based, duct; otherwise, it is denoted as an elevated duct. One common type of

surface duct is found over the ocean and is known as an evaporation duct.

Since the propagation of electromagnetic waves is sensitive to the phase of

plane wave spectral components, which can be greatly influenced by the form of

the reflecting ground, ground roughness is expected to have an important

effect on the field strengths.

As a first step toward developing a mathematical model for duct

propagation over a general rough earth, the problem considered herein is of a

perfectly conducting periodic ground with a small roughness amplitude on the

lower boundary of a duct. Specifically, the wave equation is developed and

solved for the two-dimensional case of a long horizontal source. This method

is applied to the problem of a long horizontal source radiating over a

sinusoidally shaped, perfectly conducting ground within a surface duct

environment. The eigenvalues of the "rough-walled waveguide" are found by

expanding a characteristic determinant about zero roughness amplitude to

obtain an "equivalent zero mode matrix". It is shown that for the specular

component of the reflection, the problem can be considered in terms of an

effective reflection coefficient that accounts for re-scattering of energy

back into the specular direction. Accession For
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An eigenvalue perturbation method is developed using the equivalent

matrix that permits the calculation of eigenvalues for the rough-earth case

using those of the smooth-earth case. It is shown that the eigenvalue

perturbation scheme is as accurate as directly obtaining the eigenvalues from

the equivalent matrix but requires much less computation time. The

relationship between the two methods has been detailed, and the eigenvalue

perturbations, as well as roughness loss rates, have been shown to be

consistent with results obtained using a rough-earth form of the fundamental

waveguide mode equation.

The methods documented in this report are a first step toward developing

a mathematical model of propagation under the given conditions. They can be

considered a research model applicable to a limited set of circumstances.

Further work is needed to extend the model and make it more widely applicable.

iv
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PREFACE

The Electromagnetic Compatibility Analysis Center (ECAC), a Department of

Defense facility, was established to provide advice and assistance on

electromagnetic compatibility matters to the Secretary of Defense, the Joint

Chiefs of Staff, the military departments, and other DoD components. The

Center, located at North Severn, Annapolis, Maryland 21402, is under the

policy control of the Assistant Secretary of Defense for Communication,

Command, Control, and Intelligence, and the Chairman, Joint Chiefs of Staff,

or their designees, who jointly provide policy guidance, assign projects, and

establish priorities. ECAC functions under the executive direction of the

Secretary of the Air Force, and the management and technical direction of the

Center are provided by military and civil service personnel. The technical

support function is provided through an Air Force-sponsored contract with the

lIT Research Institute (TITRI).

To the extent possible, all abbreviations and symbols used in this report

are taken from the American National Standards Instutute, Inc., American

National Standard ANSI (Y10.19) 1969 Letter Symbols for Units Used in Science

and Technology.

Users of this report are invited to submit comments that would be useful

in revising or adding to this material to the Director, ECAC, North Severn,

Annapolis, Maryland 21402-1187, Attention: XM.
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GLOSSARY

duct - a nonstandard condition in the troposphere whereby

a layer is formed, the refractivity gradient of

which is less than -157 N units/km, causing the

ray curvature of a radio wave to be greater than

the earth's curvature, with the result that the

wave is trapped in the layer and propagated beyond

its normal range

elevated duct - a duct, the bottom of which is above the earth's

surface

evaporation duct - a surface duct formed above a body of water when

evaporation causes a moist air layer to form under

a dry layer

Floquet series - a discrete sum of plane waves used as part of the

solution of a differential equation with periodic

boundary conditions

index of refraction, n - ratio of the phase velocity of an electromagnetic

wave in free space to the phase velocity in a

medium

6
modified refractivity, M - defined by the equation M = N + (h/r)'10 , where N

is the refractivity, h is the height, and r is the

earth's radius. M is defined in terms of N so

that its gradient is negative in a duct.

perturbation expansion - expansion of the rough-earth eigenvalues in terms

of the smooth-earth ones as a series in the

roughness height parameter, valid for small values

of the roughness height

xi
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GLOSSARY (Continued)

refractivity, N - defined for convenience by the equation

(n-)'106 , where n is the index of refraction

refractivity profile - a plot of refractivity (either N or M) versus

height, where refractivity is the abscissa and

height is the ordinate

specular reflection - reflection that is the same type as that caused by

smooth surfaces and has the following

properties: it is directional (angle of incidence

equals the angle of reflection), its phase is

coherent, and its fluctuations have a relatively

small amplitude

surface duct - a duct with a bottom that is on the earth's

surface and a modified refractivity gradient that

is negative from the earth's surface to the duct

top

xii
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SECTION 1

INTRODUCTION

BACKGROUND

The prediction of electromagnetic field strengths at large distances from

a radiating antenna is important to designers and users of communications

systems. Such field strengths can be greatly influenced by the variation of

the modified atmospheric refractivity M with height z. If dM/dz is negative

over a range of z, the field strength can be enhanced at large distances from

the source. The layer of the atmosphere responsible for the enhancement is

called a duct.1 -  When the ground is the lower boundary of the ducting layer,

the duct is called a surface, or ground-based, duct. Otherwise, it is denoted

as an elevated duct. One common type of surface duct is found over the ocean

and is known as an evaporation duct.
1-2

Numerical methods for predicting field strengths at large distances from a

radiating source in surface and elevated ducts have been documented.1-3,1-4

These methods are based on the waveguide mode theory of wave propagation
I- 5

and assume horizontal homogeneity of the tropospheric layers and a smooth

earth. Since the ducted modes are sensitive functions of the phase of plane

1-1 Kerr, D. E., "Propagation of Short Radio Waves," MIT Radiation Laboratory
Series, Vol. 13, McGraw Hill, New York, 1951.

1-2 Rotheram, S., "Radiowave Propagation in the Evaporation Duct," The Marconi
Review, Vol. 37, No. 192, 1974, pp. 18-40.

1-3Marcus, S. W., "A Model to Calculate EM Fields in Tropospheric Duct
Environments at Frequencies through SHF," Radio Science, Vol. 17, No. 5,
1982, pp. 885-901.

1-4Marcus, S. W., and Stuart, W. D., A Model to Calculate EM Fields in
Tropospheric Duct Environments at Frequencies through SHF, ESD Technical
Report 81-102, AD-A107710, DoD ECAC, Annapolis, MD, September 1981.

1-5Budden, K. G., The Wave Guide Mode Theory of Wave Propagation, Logos
Press, Ltd., London, 1961.

1-1
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wave spectral components, which can be greatly influenced by the form of the

reflecting ground, ground roughness is expected to have an important effect on

these modes.

A method for considering ground roughness in waveguide models of duct

propagation has been developed and utilized by Rotheram (Reference 1-2) and

Hitney.1-6 In the expression for the boundary conditions at the ground, this

method replaces the Fresnel reflection coefficient by the effective reflection

coefficient of a randomly rough surface as developed by Rice
I-7 and Ament I-8

and verified by Beard.
I1 9

For the case of a horizontally polarized wave incident on a perfect

conductor, the Fresnel reflection coefficient is -1, while the effective

reflection coefficient is

= -1 + 1/2 (A )2 (1-1)

where the Rayleigh factor A0 is defined as

A = 2 k h sin e (1-2)

k is the free-space wave number, h is the root-mean-square (rms) bump height

of the roughness, and e is the grazing angle of the ray representing the

incident plane wave.

b 6Hitney, H., et al., "Tropospheric Radio Propagation Assessment,"

Proceedings of the IEEE, Vol. 73, No. 2, 1985, pp. 265-283.

1-7 Rice, S. 0., "Reflection of Electromagnetic Waves from Slightly Rough
Surfaces," The Theory of Electromagnetic Waves, M. Kline, ed., Interscience
Publishers, New York, NY, 1951, p. 351.

1-8Ament, W. D., "Toward a Theory of Reflection by a Rough Surface,"

Proceedings of the IRE, Vol. 41, No. 1, 1953, pp. 142-146.

1-9Beard, C. I., "Coherent and Incoherent Scattering of Microwaves from the
Ocean," IRE Transactions on Antennas and Propagation, Vol. AP-9, No. 5,
1961, pp. 470-483.

1-2
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This effective coefficient considers only reflection in the specular

direction. It is an expression of the amount of energy scattered out of that

direction by the ground roughness and it contains the assumption of a standard

atmosphere with no ducts. This method of considering ground roughness when

ducts are present is popular in spite of its "semi-quantitativeness"

(Reference 1-6). One difficulty in justifying its use is based on the

dependency of waveguide modes upon continuous reflection from the waveguide

walls (Reference 1-5). Thus, a portion of the energy scattered out of the

specular direction at one reflection from the ground may be scattered back

into the original specular direction at a later reflection from the ground.

In addition, because of the nature of the duct, energy scattered out of the

specular direction may continue to propagate and may represent a mode in its

own right. Finally, the effective reflection coefficient was derived and

experimentally verified for real angles of incidence. Its carryover to the

complex eigenangles characteristic of the waveguide formulation of duct

propagation has not been validated.

OBJECTIVE

The objective of this analysis was to develop a first-degree

approximatit'i for estimating the electromagnetic field strengths at large

distances vrom a radiating antenna that is within a surface duct situated over

a periodically rough ground.

APPROACH

As a first step toward developing a mathematical model for duct

propagation over a general rough earth, the problem considered herein is of a

perfectly conducting periodic ground with a small roughness amplitude below a

duct environment. The wave equation is developed and solved for the two-

dimensional case of a long, horizontal line source. The eigenvalues of the

solution are the roots of an infinite determinant that reduce to the smooth-

earth eigenvalues as the ground roughness approaches zero. Because it is

1-3
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infinite-dimensional, the determinant cannot be evaluated directly and the

eiganvalue must be calculated using other means.

Towards this, an expression for the ground reflection coefficient

analogous to Equation 1-1 is derived that accounts for the dispersive nature

of the ground-reflected field, as well as the multiple reflections

characteristic of waveguide modes. This effective reflection coefficient is

obtained for the case of horizontally polarized radio waves propagating over a

sinusoidally shaped, perfectly conducting ground within a surface duct

environment.

This reflection coefficient is then used in conjunction with the

fundamental waveguide mode equation to derive an eigenvalue perturbation

method wherein the eigenvalues for propagation over rough earth can be

obtained easily from the smooth-earth eigenvalues. A simple numerical

expression is obtained for this eigenvalue perturbation in terms of ground and

atmospheric reflection coefficients. Although the fundamental waveguide mode

equation approach is entirely equivalent to the formulation based on the wave

equation, 1 1 0 the waveguide mode formulation provides greater physical insight

into the waveguide phenomena. This waveguide mode formulation also leads to a

closed-form expression for the rate of modal attenuation due to roughness for

trapped modes in a surface duct formed by a bilinear refractivity profile.

Another expression for the eigenvalues is then derived by expanding a

characteristic determinant about zero roughness amplitude to obtain an

"equivalent matrix" for propagation over rough earth which is identical in

form to the characteristic matrix for smooth-earth propagation. It is shown

that for the specular component of the reflection, the problem can be

considered in terms of an effective reflection coefficient that accounts for

rescattering of energy back into the specular direction. (The determination

1-10Marcus, S. W., "Propagation in a Surface Duct Over a Two-Dimensional

Sinusoidal Earth," Radio Science, Vol. 23, No. 6, 1988, pp. 1039-1047.

1-4
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of field contributions due to the portion of energy scattered out of the

specular direction and not rescattered back into that direction will be

relegated to a future study.)

A perturbation technique is used to derive an expression for the

eigenvalues of the rough-earth case in terms of the smooth-earth eigenvalues

from the equivalent matrix. This eliminates the necessity of a separate,

time-consuming search for the roots of the characteristic determinant of the

equivalent matrix for each set of roughness parameters. The accuracy of this

perturbation method is discussed, particularly as it relates to the

attenuation of trapped modes in surface ducts due to the roughness.

Numerical field strengtn predictions are presented with and without the

sinusoidal ground roughness, which shows that attenuation due to roughness can

be significant. A comparison is also made between predictions for which the

complete reflection coefficient is used and those for which only scattering

out of the specular direction is considered.

ORGANIZATION OF THE DOCUMENT

In Section 2, the field equation for a horizontally polarized wave

propagating in a duct situated over a perfectly conducting, periodically rough

ground with small amplitude is derived. The solution to this equation is

given in the form of a Floquet series. The formal solution is dependent on

determining eigenvalues that are the roots of an infinite determinant. It

remains to develop practical means of determining the roots. Theoretical

concepts required to achieve this are derived in Section 3 and the actual

solution is obtained in Section 4.

In Section 3, a waveguide mode formulation is used to derive an effective

ground reflection coefficient when the roughness is sinusoidal. This

coefficient is used in the fundamental waveguide mode equation to determine

eigenvalues of the rough waveguide as a perturbation of the smooth-earth

values. The roughness is found to cause attenuation of trapped modes, and

1-5
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this attenuation is expressed in a simple manner. This expression reduces to

a closed form when the duct is approximated by a bilinear refractivity

profile.

For the same sinusoidal roughness, the specular contribution to the field

equations of Section 2 are derived in Section 4. This is done by deriving an

"equivalent zero mode matrix" from the infinite determinant using the

effective reflection coefficient. This accounts for scattering both out of

and into the specular direction. A computationally efficient means of

obtaining the relevant eigenvalues from the equivalent matrix as perturbations

of the smooth-earth ones are derived. It should be noted that this

perturbation expansion is not the one mentioned in the previous paragraph.

Once again, expressions for loss rates are obtained.

In Section 5, numerical results obtained directly from the equivalent

matrix and from the eigenvalue perturbation methods are compared. This is

done by first plotting roughness loss rates of individual trapped modes,

obtained from the two methods, and then plotting field strengths using the

four lowest order modes.

Section 6 contains a summary of the report.

1-6
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SECTION 2

GENERAL FORMULATION

GENERAL

References 1-3 and 1I-4 contain the mathematical formulation for

describing an electromagnetic wave propagation in a tropospheric duct over a

smooth earth. This formulation will now be extended to include a periodically

rough boundary condition between the earth and the troposphere. Solutions to

the field equations will be obtained using a Floquet series. These solutions

will be dependent on determining the eigenvalues that are the roots of an

infinite determinant. Determination of the eigenvalues will be discussed in

Section 4.

PROPAGATION MEDIA AND ROUGH BOUNDARY

The modified index of refraction m(z) is defined as

m(z) = M(z) x 10-6 + 1 = n(z) + z/a (2-1)

where n(z) is the actual index of refraction; a is the radius of the earth in

the same units as the height z; and the z/a term compensates for earth

curvature, thereby enabling the use of Cartesian coordinates (Reference 1-1).

The modified refractivity profile (i.e., its variation with height) will

be approximated by a continuous piecewise linear profile with L sections (see

Figure 2-1). Each section will represent an atmospheric layer, or region, the

boundaries of which are parallel to a flat earth located at z = z0 = 0. The

interface between the i-th and i-th + I layer is located at z = zi

(1 ! i : L - 1), with the layer i = 1 closest to the ground. The L-th layer

is unbounded in the positive z direction.

2-1
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In each atmospheric 1ayer,

mi 2(z) = 1 + (z - Hi ) tan ai, 1 5 i 5 L (2-2)

where Hi is the value of z at which mi(z) would equal unity and the slope

(tan ai)/2 of the mi versus z curve is assumed small.

It is assumed that the boundary between the atmosphere ana the infinitely

conductive ground is rough in a periodic manner with spatial period d. This

boundary can be described in terms of a Fourier series.

FIELD EQUATIONS

The source of a horizontally polarized wave can be considered to be a

linear density of magnetic dipoles of infinite length that is uniformly

distributed along a line parallel to the y axis, oriented in the z direction,

and located at x = x', z = zT (see Figure 2-1). In a laterally homogeneous

medium, the fields due to such a source may be obtained from the z-directed

magnetic Hertz potential vector:

n(x,z) z (2-3)

and

W W0 V x ri, H Vx V x 'n(2-24)

where w = 27f, f is the frequency of the wave, w0 is the permeability in

vacuum, and a sinusoidal time dependence is assumed. In the i-th layer of the

atmosphere, n(x,z) will satisfy the inhomogeneous Helmholtz equation:

2-3
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V2I1. + k m. (z) R. J(x,z)/(jwo), 1 5 i < L (2-5)
3. 2-5

where the source term is given by

J(x,z) = - j W W0 p 6(x-x') 6(z-z ) (2-6)

1/2
k = w(P 0O) is the wave number in free space, and co is the permittivity in
vacuum.

The Ti satisfy the following boundary conditions which, using Equation

2-4, expresses the continuity across the region boundaries of the components

of t and A parallel to the boundaries:

3i : i+1

for z = zi, i < L-1 (2-Y)

a i/az = ani+I/az

Since it is assumed that the ground conductivity is infinite, the boundary

condition at the ground is

n x 0 for z = f(x) (2-8)

where n is the unit outward normal to the surface and f(x) is a periodic

function that describes the earth's rough boundary. Using Equation 2-4, this

can be expressed as

2-4
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f1(x,z) = 0 for z f(x) (2-9)

When z is small, H 1 (x,z) may be expanded in a Taylor series about z = 0 to

yield

I1 (xO) + [an 1(x,O)/az] f(x) + [a2 1 (xO)/az2 ] f(x) 2 /2 + . 0

(2-10)

which, together with Equation 2-7, are the boundary conditions for the

problem.

PLANE WAVE SPECTRUM REPRESENTATION

For the smooth earth problem, a Fourier transform formalism may be used

to eliminate the horizontal x variable, thereby transforming the partial

differential equation into an ordinary differential equation (Reference

1-4). This formalism requires horizontal homogeneity for its implementation,

which is not present in the problem under consideration because of the

presence of ground roughness. (This is not to be confused with the

atmospheric layers, which are horizontally homogeneous and which thereby

permit the use of the Hertz potential formalism.) Therefore, an analogous

method will be used that is valid for the periodic type of boundary that is

assumed. This method will reduce to the Fourier transform formalism in the

zero roughness limit.

The source function J(x,z) may be written as a sum of its plane wave

spectral components. Since these components are continuously distributed,

this sum is expressed as an integral:

2-5
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J(x,z) - 1 f du ej x j(Wz) (2-11)
(27) --

where, using the definition of the Fourier transform and Equation 2-6,

S(11,z) 1 dx e-J"x J(xz)
(27) --

- j W UO p S(z - zT) e - j p'x (2-12)

Each spectral component J(p,z)eJ X/(27) may be considered an independent

source contributing to the electric field. Let the solution of the problem

for this component of the source be given by Hi (p,x,z)eJu(x-x') /(21) in the

i-th atmosphere layer; then, by superposition, the solution of the problem for

all the source components is

i(x,z) _ 1 j dp ejI (x - x ' )  i (i,x,z) (2-13)
(2-R) --

This equation differs from the familiar Fourier transform in that I. is a

function of x as well as Li and z.

Since the solution of the problem in the i-th layer is fi.(u,x,z)eJu(x-x')

when the source function is 3(w,z)eju x , these may be substituted into Equation

2-5 for the Ri and J, respectively. Carrying out the differentiation of the

ejPX factor and using Equation 2-12 then results in

2 2 2 2 2 2k2 2
(a/ax2 + a /3z )I i + 2j 3 i /ax + (k m - )Ri

: - p 6(z - zT) (2-14)

2-6
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The ejp (x - x ) factor no longer appears in Equation 2-14. The only source of

variation in the x direction is due to the periodic rough earth boundary

condition. Hence, the variation of H with x is periodic and may be written in

the form:

I. (P,x,z) F. (n)( , eJ nx (2-15)i n I

Substituting this form of the solution into Equation 2-14 results in

S{d2 F (n)/dz2 + [k2m 2 - + Kn)2 1 F(n)I ejKnxn i + i - + n]F i  }

= -p 6 (z-zT) (2-16)

This equation could have been obtained directly from Equation 2-5 by

assuming a solution of the form:

R. = Z F. ,z) j(i + n)x (2-17)1 n i v~z

This equation is a Floquet series. It is a discrete sum of plane waves

because the boundary conditions are periodic.

Since the mi are not functions of x, the coefficients of exp(jznx) in

Equation 2-16 are independent. Therefore, the sum of N terms are N

independent differential equations. The result is

d 2F(n) /dz2 + [k2mi(z) 2  (n)21 F ( 6(Z - zT), all n
12 I  -1.i op1z T  ,  l

(2-18)

2-7
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where

(n)-19)P + icn (2-9

From Equation 2-17, it is seen that the expression for Hl. is the same ini

each atmospheric region except for the Fi(n) factor. Hence, the boundary

conditions in Equation 2-7 can be rewritten in the same form but with

Ri replaced by Fi(n):

, ( n )  : . ( n )
i F i+1(

for z = zi, 1 s i ! L-1 (2-20)

(n)/ z  a (n)/3 zFi  = i(n

The expression of the boundary condition of Equation 2-10 is somewhat

more involved because of its dependence on x. Using Equation 2-17, this

boundary condition becomes

E ej n x {FI (11,0) + aF (n)(P,O)/az f(x)
n

(2-21)

+ a2F1(n)(,O)/z2 f(x)2/2 + ...} 0

or, ignoring terms of order f(x) 3 and higher,

ne j n x F1 (n)(p,O) + F1 (n)(p,O)/az E pmeJ K(m+n)x
n { m

(2-22)
- (n)2F (n)(wO) E s eJK(m+n)x} 0

1 ' mm

2-8
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where

(n)2 ) k2 in0  (n)2 (2-23)

and Equation 2-16 was used. pm and sm are the coefficients of the Fourier

series of f(x) and f2(x), respectively, which are small for small roughness.

Equation 2-22 will be simplified by using the orthonormality of functions of

the form exp(j27nx/d), expressed as:

1 d j2rt(m-n)x/d
d e dx = 6 (2-24)
0mn

Multiplying Equation 2-22 by e j (where r is an integer) and

integrating the result over the period d yields

F (r)(i,O) + z aF (n)(U,O)/az p

1 n 1 r-n

(2-25)

- (n)2 F (n) =5r-n 0, all rn I  ( 0 r-n ,

Therefore, to obtain a solution to the rough earth problem, Equation 2-18 must

be solved using the boundary conditions in Equations 2-20 and 2-25.

SOLUTIONS OF THE EQUATIONS

By substituting Equation 2-2, Equation 2-18 can be cast into the form of

Stokes' equation, the solution of which is

F.(n)(iz) = Ai (n) K1(qi
(n)) + B i(n)K2(qj(n)) + Fp 6 ip6nO,

all n (2-26)

2-9
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where

q. (n) ) k 2/3 2 _ (n
q tT il [m (z) 2 (2-27)

K, and K2 are linear combinations of modified Hankel functions of order one-

third,2- 1 and P is the number of the layer containing the source current. The

Ai(n) and Bi(n) are functions of the parameter p and are found by invoking the

boundary conditions. It is to be noted that, although 1 enters the

differential Equation 2-18 in the form p(n)2, Ai (n) and Bi(n) cannot be

written simply as functions of (n) since they must be found by solving a

linear system of equations that include the boundary condition of Equation

2-25, which contains all values of n.

The particular solution Fp of the inhomogeneous form of Equation 2-18

(i.e., n 0) is given by either of the following (Reference 1-3):

R nPK1(qP < ) K2 (-p>)

p - Re K1(qe>) Ke2(qe<)(228

where

R P = e/Wqp'(z) (2-29)

e= qp(O)(minfzz T)I qp> q,(0)(max{z,zT}) (2-30)

2-1 Harvard Computational Laboratory, Tables of Modified Hankel Functions of

Order One-Third and of Their Derivatives, Harvard University Press,
Cambridge, MA, 1945.
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W is the constant Wronskian of K1 and K2 defined by

W = W{K 1,K2} K1(qe) K2 '(qP ) - K2 (qP ) K1 '(qe) (2-31)

The primes in Equations 2-29 and 2-31 indicate differentiation with respect to

the argument. In particular,

qi(n)'(z) = dqi (nz)/dz ( )/3 tan (2-32)3.a2 J 32

where Equations 2-2 and 2-27 were used. It should be noted that the right

side of Equation 2-32 is independent of z, , and the index n.

(n)
To solve for the field in the atmospheric layers, the coefficients Ai n

Bi(n) of the general solution in Equation 2-26 must be known. These will now

be determined by solving a set of simultaneous linear equations obtained by

substituting Equation 2-26 into the boundary condition of Equations 2-20 and

2-25. This will be accomplished here under the assumption that the source is

not in the atmospheric layer bordering the ground, i.e., P > 1. This

assumption removes the necessity of considering the inhomogeneous solution of

Equation 2-26 in the roughness boundary condition of Equation 2-25. It has no

limiting effect for any finite height of the source, since the lowest layer

can always be formally divided into two separate layers at a point below the

source height. Substituting Equation 2-26 into Equation 2-25 yields:

[A3 1-n) n(r-n) + B 1(r-n) V 0(r-n) 0, all r (2-33)
n

where

Un(r-n) = K1lq1'(q10(r - n)) pn + K1(q (rn) 6nO - Y (r-n)2

(2-34)

Vn(r-n) =K2q(q(r-n)) pn + K2 (q10(r-n) (6 - Y (r-n)2 n

2-11
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q ()qi ( n)(,(2-35)

Finally, substituting Equation 2-26 into Equation 2-20 yields

(n) (n) (n) (n) (n) (n) (n) (n) (n)
2i,2- 2, 2iB i +a2i ,2 Ai+1 + a 2i ,2i+2B i+I ~2i

(2-36)

and

a () A. (n+a.(n .B. (n+a(nA()

(n) B(n) (n) (2-37)

a2 i+1 ,2 i+2 i+2 2ii-1

where

a (n)i K (q (n))

a (n) K Kq(n
2i,2i - 2 ii

a (n) K K(q (n) .

2i,2ii-1 1 i+1 , i
(2-38)

2-12
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(~n) K (n))

a2i+1,2i-1 1, (q i

a (n) - K I(q (n))

2i+l,2i - 2 ii

(n)qf() ) .
a2i+1,2i+1 K 1 q i+1 ,i )q+1 , (-9

n)(n

(n (zzz ) 6~ (6 i+, i6

() =d (zz)/dz 6n (6i1, - 6 j) / qi(' ~O

and when i =L - 1, the Ai+l (n) term is absent in order to satisfy the

radiation condition.

Equations 2-33, 2-36, and 2-37 may be written in matrix form as

a (2-41)

where a is a square matrix, and ni and 6 are column vectors. To illustrate

their form, consider the case in which L =2, P = 2, and n takes on the

values -1, 0, and 1. By grouping together Equations 2-33, 2-36, and 2-37 for

each value of n, a may be written

2-13
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a(-1) a(-1) u (0 ) (~0 ) 1
a11  a12  -1 -1 -2 -2

a21  a22  a23

a (- ) a (- ) a( I
31 32 33

a(0) a(0) a(0)
a2 1  a22  a23

a(0) a(0) a(0)
31 32 33

(2-42)

U- V2 (-1) 1 (0 1VO a~l a(1
2 2~ 0 1 1 11 12

-M 1 (1) (1)
Cx21 a 22  a 23

a~l a~l a~
31 32 33

and

B2 (-1) 0

B =O 62 (2-43)

B 1) 0

2-14
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where

82 F2 (z~z1 )

(2-44)

63 [dF 2(ZZ )/dz]/ql

and

(n) U (n) (n) = VO(n) (2-45)a11  = U , a1 2  V(24)

Equation 2-41 is solved for any desired elements of n by using standard

methods for solving a system of linear equations. Thus, following the

definitions introduced for the smooth-earth case (Reference 1-3), the

coefficients Ai(n), Bi(n) may be written as ratios of determinants:

(n) (n) , (n) (n)Ai = 1 Ai 11 / I1 1 1, Bi  H T B 1 / H l

(2-46)

where TAi (n) is the matrix obtained by replacing the column of a containing

the coefficient Ai(n) by the vector 8, and TBi (n) is the matrix obtained by

replacing the column of a containing the Bi(n) coefficient by the vector 8.

The JIjTj are functions of the source height zT, while H1all is not.

The above values of Ai(n), Bi (n) can be substituted into Equation 2-26 to

obtain the Fi(n), which are used, in turn, to obtain ft from Equation 2-15.

This result is then used in Equation 2-13 to obtain the desired Hertz

potential. In the event that the ground were smooth, all the Fi(n) would

reduce to 0 for all n * 0. Since only n = 0 would be included, Fi(O)( , z)

would be obtained. Far from the source, the expression for the electric field

relative to its free space value is proportional to R and is precisely the

2-15
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same as that for the cylindrically symmetric smooth-earth case (Reference

1-3).

From Equations 2-13, 2-15, and 2-26,

_ . ji ~ x (n) (n) (n )(n

n. (x,z) - e1 dI eej Z eJI (n), I  
K  (q ) + f Bi1 K2 (q (n )

- T 2n12

(2-47)

The above infinite integral may be transformed into a contour integral by

closing the contour below, as shown in Figure 2-2. Since the poles u = PM

of the integrand are expected to lie in the lower half of the w plane, the

above integral can be meaningful for I x I- only if x is taken to be

negative. The integrand can then be written as the sum of residues:

1i(x,z) = (-27j/2n) I Resm (2-48)

where

Res m  Resm[e-JWIxI fi(lU ,x,z) : Xm Em exp(-jpmlXI) (2-49)

Xm = [2lIIAl/)d -, (2-50)
m

E Z e- j 2n lx l E-mn (2-51)m n

E n 1 1 i(n) 11K1( i(n) + I i(n) 1 K qi(n) (2-52)
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Equation 2-48, therefore, can be written

i = exp[-J lxi] E e-JnlIXE

n.(x,z) = -Jm m n mn
(2-53)

-j z A E exp[-j lxI]m m m m

SUMMARY

In Equation 2-42, the matrix of the characteristic determinant has been

divided into submatrixes, with those containing the aij (n) elements lying

along the diagonal. By using the definitions in Equation 2-34, it is seen

that the roughness, characterized by the roughness amplitude C, appears only

in the rows containing the a11 (n) and a12(n) terms. Since the index n labels

a Floquet mode, the elements of the off-diagonal submatrixes (i.e., the

elements Un(r-n), Vn (r-n)) are all of at least first-order in e and serve to

couple together the various Floquet mode contributions.

This is seen by observing that, if all elements not contained in the

diagonal submatrixes were zero, the Floquet modes may be "decoupled" from each

other. Each submatrix on the diagonal would then represent an independent

system of equations to determine the contribution of a Floquet mode of the

problem. Because of the form of the free vector B in Equation 2-43, the free

vector for each submatrix would then be zero except for the O-th Floquet

mode. The corresponding field coefficients (i.e., Ai(n), Bi(n)), therefore,

would all be zero except for the O-th Floquet mode, thereby leading to the

smooth-earth solution

ii(xz) = -J A km Emo exp[-JumlXi] (2-54)

2-18
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This does not imply that eigenvalues (or zeroes of Iiall) of only the 0-

th order submatrix are present. Just as there are zeroes of the O-th order

submatrix, there are zeroes of the other submatrixes representing other

Floquet modes. However, in the limit of zero roughness, only those modes

representing the eigenvalues of the O-th order submatrix are excited.

Referring to Equation 2-52, the TAi(n)and TBi (n ) would be non-zero only for n

= 0 and only for roots p = Pm of H Ial corresponding to the roots of the 0-th
order submatrix. Therefore, the sum in Equation 2-54 is over only those

eigenvalues of the 0-th order submatrix.

The locations in the complex p-plane of eigenvalues 1'm of each Floquet

contribution are illustrated schematically in Figure 2-3 for the case of zero

roughness. Since the only difference in each submatrix is the index n of
(n), the set of eigenvalues for each value of n would be translated from the

set of modes for n = 0 by an amount <n along the real axis. There is no way

of associating particular eigenvalues with specific values of n when the

roughness is large. When the roughness is non-zero but small, it is expected

that their location in the complex plane differs only slightly from the zero

roughness case so that identification between a given set of eigenvalues and a

particular Floquet series element can still be made.
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SECTION 3

EFFECTIVE REFLECTION COEFFICIENT AND WAVEGUIDE
MODE ATTENUATION

GENERAL

In the previous section, solutions to the electromagnetic field equations

for horizontally polarized waves propagating in a duct situated over a

perfectly conducting, rough earth were obtained. These solutions depend on

determining eigenvalues that are the roots of an infinite determinant.

In this section, a waveguide mode formulation is used to derive an

effective ground reflection coefficient. This reflection coefficient is used in

the fundamental waveguide mode equation to determine the eigenvalues of a

waveguide with a periodically rough boundary as a perturbation of the smooth

boundary values. The roughness is found to cause attenuation in trapped modes,

and this attenuation can be expressed in a simple manner. It reduces to a

closed-form expression when the duct is approximated by a bilinear refractivity

profile. This approach is entirely equivalent to that given in the last section

but provides greater physical insight into the waveguide phenomenon.

REFLECTION COEFFICIENTS

A horizontally homogeneous atmosphere is characterized by a continuous

piecewise linear refractivity profile with L sections (refer to Figure 3-1).

Using Equations 2-1 and 2-2, the modified refractivity of the i-th section of

the profile can be written as

Mi(z) 1[mi 2(z) - 1] x 10 1 _1 i < L (3-1)

where mi(z) is the modified index of refraction. For sinusoidal roughness,

the ground surface satisfies

f(x) = e sin (Kx + (3-2)

3-1
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where K = 21/d and d is the spatial period of the roughness.

Assume that the region below z = 0 (see Figure 3-1) is half-space

consisting of material with the same refraction index m0 as the atmosphere at

z = 0, and that a plane wave characterized by exp(j (n) x)exp(jy (n)Z) is

incident on the z = 0 interface from below, where

(k - (n )1 = k sin e (n) (3-3)

(n) (n)
P( = vi + Kn, k0 = m k,  ( is the grazing angle, which may be complex,
and n is a positive or negative integer. Since an ejwt time dependence

is assumed, the wave is propagating in the negative x direction,

and Re( (n )) > 0, Re(y (n )) > 0 . The total field in the region z < 0 then

will be characterized by exp(ji (n)x) [exp(-jy (n)z) + R(n ) exp(jy (n)z)]

where R(n ) is the corresponding "upward-looking" reflection coefficient.

Now consider the case of a plane wave incident on the rough surface from

above. The region above is now assumed to be homogeneous with refraction

index m, and the incident field is characterized by exp(ji (n) x)exp(j(n)Z).

Since the ground is periodic with wave number K, there will be waves reflected

in discrete directions (see Figure 3-2), so that the reflected field above the

ground will have the form:

(-6nm + Tnm ) exp(jp(m)x)exp(-jy(m)z) (3-4)
m

where 6nm is the Kronecker delta function, and the sum is over all positive

and negative m. The Rnm are elements of a "downward-looking" roughness

reflection matrix in which the element (n,m) represents the portion of the

field which, because of the roughness, is reflected into a wave characterized

by i(m) when the incident wave is characterized by p (n). By expanding the

3-3
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Figure 3-2. Discrete spectrum of plane wave reflection
from sinusoidal rough surface.

field and the boundary in powers of the roughness amplitude e (Reference 3-1),

it can be shown that, when the horizontally polarized E vector is normal to

the direction of roughness variation,

|12 (n) (n-1) (n+1)3

Rn,n (E) 1/2E n ((- + ) + 0(E (3-5)

(n)ejR (E) -j e Y ejo + 0 (C) (3-6)

n ,n-1
R n~n-1 (C) E Y(n) e-j~bO (2(37

R (E) 0(2) (3-8)n ,n-in

3-1 Fessenden, D. E., "Space Wave Field Produced by a Horizontal Electric
Dipole above a Perfectly Conducting Sinusoidal Ocean Surface," Third
International Conference on Antennas and Propagation ICAP 83, 1983.
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The upward- and downward-looking reflection coefficients are used in the

following subsections to obtain the modes of the atmospheric waveguide.

WAVEGUIDE MODE EQUATION

The modes of a smooth-earth atmospheric waveguide can be thought of as

discrete grazing angles em, or equivalently discrete wave numbers iml

characterizing plane waves at a given altitude within the waveguide. Choosing

that altitude as z = 0, each such plane wave will have the property that,

after a complete cycle of reflection from the upper boundary and reflection

from the lower boundary, its amplitude and phase at each value of x along

z = 0 will be identical to those of the original wave. This may be expressed

as

R ( P(m )  R(Im ) - 1 0 (3-9)

where R(0 ) is the upward-looking reflection coefficient and R is the downward-

looking reflection coefficient. For a horizontally polarized wave propagating

over perfectly conducting ground,

R(p) = -1, all p (3-10)

so that the pm satisfy

R(O)(- m )  = -1 (3-11)

Although Equation 3-9 was derived on the basis of a single cycle of
reflections from the upper and lower waveguide walls, the result would be

identical if any number of cycles were used.

3-5
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If a sinusoidal roughness is now considered, the situation is more

complex, since a wave incident on the rough surface from above is reflected

into an infinite set of discrete directions (see Figure 3-2). Limiting the

discussion to those wave components within the propagation medium

characterized by the wave number p(O), Equation 3-9 can be generalized to a

rough-surface waveguide as

S(Im,6) _ R(0)  R( (0),6) - 1 = 0 (3-12)

where 6 is a small quantity characterizing the roughness,

R( (0),6) = -1 + AR( (0),6) (3-13)

is an effective reflection coefficient, and AR is the reflection coefficient

correction due to roughness for waves characterized by u(0)

Some thought indicates that a component of the ground-reflected wave that

is not in the specular direction, because of the assumed waveguide nature of

the propagating medium, will be reflected back to the ground from the upper

wall of the guide (see Figure 3-3). Upon re-reflection from the ground,

another discrete spectrum of waves is obtained, including a component

characterized by the original p = p(0) wave number. The same process can

occur after any number of ground reflections.

Referring to Equations 3-5 through 3-8, note that after a single

reflection from the ground, the reflection coefficient correction for the W(0)

component of the reflected field is R0 ,0 1 This corresponds to wave BHE in

Figure 3-3. After an additional cycle, there is a reflection coefficient

correction contribution in the p(O) direction due to a wave that was first

reflected into a p(m) direction and then reflected back into a w(0) direction

(such as BGCJ in Figure 3-3). This contribution is
[ R(m) R ] - Rm R(m)

ROm m,O - Om RO

3-6
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If the reflection coefficient correction contributions are to be of order
it is seen from Equations 3-6 through 3-8 that m can take on only the

values of ±1. With this limitation, the contribution to AR after an

additional cycle would occur as a result of the original '() wave being

scattered into a U(m) wave after the first reflection, scattered specularly

into a p(m) wave after the second reflection, and scattered back into a i(O)

wave after the third reflection. This contribution to the reflection

coefficient correction is

Rom IR  (-1 + R mm)] [R(m)R Rm Rm,0 (-R m [R1 ), m ±1
mmni,0 0 omR~ -Rm2 ( 3

This corresponds to BGCIDK in the figure. In general, after N + 1 cycles, the

reflection coefficient correction contribution is

R (-.R(mn))N in ±1.

Summing all these contributions for m = -1 and m 1 yields

R R -O1 e-1 (-R(-l))i - HO 1,0 (-R )
0 i -0 0 1 (3-14)

where the sums are over all integers i ? 1. Equation 3-14 can be consideLed

an expansion of AR for small values of JR(')- and JR( 1)1. As R(- I ) and R(1)

increase in magnitude, AR contains more of an interaction between the ground

and the propagation medium. In such a case, use of R0,0 alone (which, like AR

in Equation 3-1, describes only the energy scattered out of the specular

direction) is insufficient to compute AR.

Substituting Equations 3-5 through 3-7 in Equation 3-14 yields

AR 2(0) (-1) R(-1) - 1 (1) R(I) - 1 2

= + y (1)-
R ( - I )  + 1 I + 1I

(3-15)
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where the identity I (-R) i = -R/(l+R) was used. From Equation 3-15 it is

clear that AR is proportional to e2 . For future convenience, 6 will be

defined as 4 e 2. The relationships in Equations 3-13 and 3-14 may be used in

Equations 3-12 to obtain the eigenvalues pm,

EIGENVALUE PERTURBATIONS

A separate numerical search for the eigenvalues, or roots, of Equation

3-12 is required for each value of e or d. This eigenvalue search is

extremely time consuming. A method is now described that, to the same degree

of accuracy, permits the rapid calculation of the pm(E) for any set of (E,d),

once the Pm(O) have been found.

For a small roughness amplitude e, the eigenvalues can be expanded as

um(s) : m(O) + Aum  (3-16)

where

6Wm  du m(O)/d6 6 (3-17)

is the amount by which the m-th eigenvalue is changed as a result of the

roughness through the process of scattering energy out of and back into the

specular direction. Now,

dS = S du + S6d6 (3-18)

3-9
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where the subscripts u and 6 indicate partial differentiation, and the partial

derivatives may be evaluated at , = wm(0), 6 = 0. Choosing dw and d6

such that p remains an eigenvalue requires that dS = 0. Therefore,

dim (0)/d6 = -S 6/S (3-19)

Substituting this in Equation 3-17 and using Equation 3-12 results in

AIm = -AR(u (O) / R (Pm(0)) (3-20)

where Equations 3-10 and 3-11 were used.

Numerical calculations indicate that for the Pm representing the least

attenuated modes of propagation,

M/Ik 0 1 (3-21)

and that

IR ( )  (im) I  >> 1, IR(-1)(1m )I << 1 (3-22)

when

2]/k0 > [1 - 0 )2 10 (3-23)

From Equation 3-15, this leads to

A( = (0) (-1) _ (1) 2 (3-24)

Using Equation 3-21 it may be shown that for K/k0 not very large,

(±' ) k0 (ic/k0 ) (+2 - K/ko) (3-25)
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Then, using Equation 3-3,

AR = J[(2 - X/d) - j (2 + X/d) ] [sin e(0) k 2 (/d) E

(3-26)

where X = 21/k O. The first factor in brackets on the right-hand side is of

order unity for all X/d 1. The second factor represents the small quantity

in which R is being expanded. Comparing it with the square of the Rayleigh

factor of Equation 3-1, it is seen that sin28 in the latter is replaced here

by sin 0 times (X/d)2. For most cases of interest, the Rayleigh factor will

be smaller. It should not be surprising, then, if common situations arise in

which additional terms in the expansion of Equation 3-16 are required.

Using Equation 3-26 in Equation 3-20 yields

1(0) (0) 2
Im = -2[(2 - X/d)' - j(2 + X/d) ][sin ( /R I [ko (X/d) ] 6

(3-27)

TRAPPED MODES

The ratio sin o(0)/R (0) in Equation 3-27 depends on the eigenvalue 4m"

For trapped modes, which are identified by Marcus and Stuart (Reference 1-4),

Im(sin 6(0 ) ) = 0 (3-28)

This ratio can be obtained from the phase integral approximation (Reference

1-5) according to which

R(0 ) = e- (O - ) (3-29)

where

[ ( )2 _C
2 11

= (e) 2k ' [m(z ] dz (3-30)
0

3-11
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C = m 0 cose (3-31)

and z = &(0) is the root of m(z) 2 - C2  = 0 and is the height at which a

ray with grazing angle e at z = 0 will experience a turning point. From

Equation 3-11, the eigenvalues e = em satisfy

(O) = (2m + 3/2)7, m = integer (3-32)

From Equation 3-3, Pm = k0 cose so that

R(0) : k 1R(O)/acose -k cote aR( O )/asine (3-33)
1.1 0 0

which should be evaluated at e = em. Equations 3-29 through 3-33 can be

evaiuated numerically for any desired surface duct profile, or can be

evaluated in closed form for the piecewise linear, two-layer profile

illustrated in Figure 3-1. For this case, and for all m,

sin e /R (0) j tanm u an 33

thereby providing a closed form expression for A~im in Equation 3-27:

A m  = 1 [(2 + X/d) + j(2 - X/d) tan a1 k02 (X/d) 6

(3-35)

From Equations 3-28 through 3-33, it can be shown that for trapped modes,

Re(R (0)) Z 0 (3-36)

Using Equations 3-28 and 3-36 in Equation 3-27 yields

Im(Ap ) = 2 (2 - X/d) [j sin e(0) / R (0)] [k02(X/d) ]  6,

d > X/2, trapped modes (3-37)
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PROPAGATION LOSS RATE

The contribution of each waveguide mode to the total field has a

dependence on the distance lxi given by exp[-jp m(E) lxi], where jxj can

increase to large values (References 1-3 and 1-4). If Apm has a non-zero

imaginary part, the exponential decay factor of exp[-j Ailm lxj] can produce a

large effect on the field that varies with distance. The change Lm in

propagation loss for the m-th mode over that which is experienced over smooth

earth is

Lm  = -20 log 10{exp[Im(i m)IxI]} = -8.68589 Im(Awm) jxi (dB) (3-38)

It is convenient to define the rate of loss of the m-th mode due to roughness

as

LRm L /Lxl= -8.68589 Im(A m ) (dB/km) (3-39)

where Ap is in units of km- I.

The fact that 6 im is proportional to C2 permits a definition of roughness

loss per unit distance per square of roughness amplitude:

LSm = 10-6 LRm/ 2  (3-40)

where 6 is in meters.

Using Equation 3-37 in Equations 3-39 and 3-40 yields
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Lsm 8.68589 (0-6) k esin 8 (X/d (2 - X/d)] L/2,'2jR(0),

(dB/km/m 2), d > X/2, trapped modes (3-41)

and using Equation 3-34 in Equation 3-41 yields

LSm , 1.0857 (10-6 ) Itan 1 ko2 (x/d) (2 - X/d)' (dB/km/m2),

d > X/2, trapped modes, bilinear profile (3-42)

where X and d are in the same units, and the ko, p, and tan a, are in units of

km-1 . LSm as given in Equation 3-42 is always positive, thereby indicating

the detrimental effect that roughness has on the ability of the trapped modes

to propagate unattenuated.

It is interesting to note that if the only contribution to the reflection

coefficient correction came from energy scattered out of the specular

direction, then AR = RO0 . Comparing Equations 3-5 and 3-24, this is

tantamount to replacing - 1) by y in Equation 3-24. Since only the real

part of AR enters the expression of LSm for trapped modes, Equation 3-41 would

be obtained for this case as well. It should be emphasized that LSm is

identical for the partial scattering and the full scattering cases only when

the modes are fully trapped. Furthermore, though the loss rate with distance

may be the same for these modes, the roughness effect on the fields would be

different since AR also affects the phase of exp(-jAimlx1).
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To demonstrate the effect of roughness on the modes of propagation, a

plot is provided in Figure 3-4 of LSm as a function of the roughness spatial

period d for the two trapped modes obtained using the surface duct

refractivity provided in Figure 3-1. LSm in these plots was calculated from

Equation 3-42 using a frequency of 6.814 GHz, corresponding to X = 4.4 cm.

For these trapped modes, LSm exhibits relatively large values in the

vicinity of d = x. The maximum value occurs at the value of K at which

dLSm/dK = 0, which from Equation 3-42, is seen to occur at d X.

SUMMARY

A method for obtaining the effect of sinusoidal roughness with a small

amplitude on the waveguide eigenvalues of horizontally polarized radio waves

propagating in a horizontally homogeneous atmosphere has been described. The

method is based on the fundamental waveguide mode equation and utilizes an

eigenvalue perturbation scheme. The eigenvalue perturbations, as well as

roughness loss rates, are expressed in terms of reflection coefficients that

consider energy scattered out of as well as into the specular direction.

A closed-form expression is provided for the roughness attenuation rate

of trapped modes in an atmosphere approximated by a bilinear refractivity

profile. This attenuation rate was found to be largest when the propagation

wave length and the surface roughness spatial period are close in value.
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SECTION 4

SOLUTION FOR SINUSOIDAL ROUGHNESS

GENERAL

The general approach to the solution of the basic equaLoors involving

electromagnetic wave propagation in a surface duct over a sinusoidal rough

earth was presented in Section 2. This consisted of a waveguide mode method

formulated for determining the field strength over a slightly rough earth.

The eigenvalues of the waveguide formulation were found as roots of an

infinite determinant that reduces to the smooth-earth eigenvalues as the

ground roughness c approaches zero.

In this section the matrix is written in a form such that, when the

roughness e approaches zero, the determinant becomes a product of

subdeterminants, each representing a Floquet mode of propagation. As in the

last section, the roughness is assumed to be sinusoidal, given by

Equation 3-2.

For the case of L = 2, and including for demonstration purposes only the

central 9 x 9 elements,
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a(-1) a -I) b0) b(0) eM() c (1)
11 12 1 2b 2

21  22 23

a(- ) a(-1) a 3 1)
31 32

1 2a11 1212

(0) (0) (0)
a2 1  a2 2  a23

CL (4-1)

(0) a(0) (o)
31 32 33

e(-1) e(-1) d(0) d(0) a(1) a(1)
e1  e2  d 2 11  a12

a(1) a(1) (1)
2 1  2 2  a23

(1) a(1) (1)

31 32 33

where

a(n))ri (n) : .( l(n)) i : I 2

a 2 Ki(q 1 1  a 3i K- K'(q11  i 1, 2;

(4-2)

a ( )(n) (n) : -2 ( n ) /q

a23(n) K2(q2 ), a33  -K29(q2j))q 2 I/q1 ', all n

4-2



ECAC-TR-88-001 Section 4

a (n) K(q10(n)) [ - E2 (n )2]

e.(n) -(E 2/8) Ki(q 10  (n) 2

(n) (C2/8) Ki(q 10 n(n)) (n)2 e-2J- (4-3)

di(n) I K.'(q n)) J
d 1rKi( 10 qe

bi(n) : Ki (q 10 n) q e- J, i 1 1, 2; all n.

The KI(q) and K2 (q) are linear combinations of modified Hankel functions of

order one-third (Reference 2-1).

(n) (n) 2(k/tan 2 (n)2 2
qij q i (zj) ail) [mi (z) i /k

(4-4)

(n) -5)
11 p + icn (4-5

(n)2 k 2 (n)2 (4-6)y = m0  - u(4i

zj is the upper boundary of the j-th atmospheric layer, z0  0, m0 = m1(O),

and primes denote differentiation with respect to the argument. The

superscript (n) denotes the index of a Floquet mode.

It has been shown that in practical problems, the "power sum" expression

ni(x,z;E) : { x m exp[-jljm(c)lxIl I e-j~nl x l Emnl2} (4-7)
m n
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often provides more accurate predictions of the duct field relative to free

space (Reference 1-3).

EQUIVALENT ZERO MODE MATRIX

When E approaches 0, the determinant IHiI reduces to a product of

subdeterminants, each representing a Floquet mode of the propagation, and Emn

= 0 except for n = 0. The discussion below concentrates on the effect of the

roughness on the O-th Floquet series element and on the contribution of that

element to the total field. That is, when the roughness is small, the Um(s)

may then be used to obtain the Emo[Pm(E),ZzT;cj and Xm[Pm(e);e] so that the n

= 0 contribution to ni(x,z;e) may be computed.

The 1im are the roots of Ilall. Referring to the infinite order matrix

form, Equations 4-1 and 4-3 may be used to write, to second order in c,

H1ail = II D ())] [1 - 6 [(D (n)/D(n))(D (n+l)/D(n+l))I}

n a a
n (4-8)

where 6 E 2, and

a (n)( a a (n)(n)

a (31 a32  a33

11 12
(n) (n) (n) a23(n) (4-9)Dn() a2 1  a2 2 a 3

(n) (n) a3(n)

a3 1  a32  a33

(n) (n)b1 1  bl2

D(n) a2 (n) a(n) aen (4-10)
Da 2 a22 2

(n) (n) a3(n)
a31  a32 3
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b11 = K1I (q ) )ql ', b12 (n) = K2' (q10 (n) )ql' (4-11)

and the product and sum in Equation 4-8 are over all n. Using the first

expression in Equation 4-3,

[rI D(n)(e)] = [1 D(n)(o)] 1I - 6 1 y(n )2J (4-12)
n

so that Equation 4-8 may be written

I C 1 1 S (n )  (4-13)

n

where

S(n) - 6 y(n)21 {D(n) 6 6 Da(n) IDa(n+1)D(n+1)} n >

(4-14)

S (0) (1 6Y (0) [D D a(0) ID a(I)/D(I) + D a(- )/D (-l)]}
S0) = { - 6 y()2 fD¢0 ) - 6 Da

0  Ia(1 ~ 1  a~ 1 /D 1

(4-15)
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S (n) - 6(n)21 ID(n) - 6 D a(n)[D (n- l)I (n-1) , n

(4-16)

and all the Din ) determinants are evaluated at 0 0. Equations 4-14 through

4-16 are valid as long as the denominators are finite.

The eigenvalues corresponding to the n = 0 Floquet mode, therefore, will
be the roots v = pm(c) of S(0 ) . But determination of these roots is

equivalent to determining the roots of the determinant of a matrix similar in

form to that of Equation 4-9 with the substitution

alii Ki' - (j y Ki/q') (4-17)

Y {6 j [Da 1 ) /D(1) + D (-)/D (-I)11- (4-18)

where multiplication by the constantl - y (0)2 F 1 was permitted under the

assumption that the source is not located in the lowest atmospheric layer.

The matrix in Equation 4-9 with the substitution in Equation 4-17 will be

referred to as the "equivalent matrix" for propagation over rough earth and is

identical in form to the characteristic matrix for smooth-earth propagation

(Reference 1-3). _ can then be interpreted as the effective propagation

constant in the ground, and the effective reflection coefficient is given by

(() - ) ( (0) + -1 + (4-19)
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where

AR 2 j 6 y(O) [Da(1)/(1) + Da(-1) /D(-1) (4-20)

Since Equation 4-19 represents an expansion of R about R = -1, it is expected

to be valid when AR is small relative to unity.

The equivalent matrix can be used to determine all field contributions of

the O-th order Floquet mode. It cannot be used to obtain the contributions

from other Floquet modes that correspond to the 0-th mode eigenvalues; this

will remain a goal of future study.

Using a rough-earth version of the fundamental waveguide mode equation,

it has been shown that

( ) (-I) R(-1) / R1I \ 2
(R(-) + (1) ( 1 + 1 2

(4-21)

where R(n) is the reflection coefficient "looking upward" from below the rough

surface. That is, if the region below z = 0 (see Figure 4-1) is replaced by

material with the same refraction index m0 as the atmosphere z = 0, and if a

plane wave characterized by exp(j (n)x)exp(-jy (n))is incident on the z = 0

interface from below, then the total field in the region z < 0 will be given

by exp(j (n)x) [exp(-jy (n)z) + R (n)exp(jy (n)z)]. Equations 4-20 and 4-21 can

be shown to be identical by noting that

4-7



ECAC-TR-88-O01 Section 4

( n) : a (4-22)
R j y(n) D(n)(o) + D (n)

which can be obtained by solving a linear system of equations expressing the

continuity of the Hertz potential and its normal derivative at the ground and

at each atmospheric layer interface.

The reflection coefficient correction in Equation 4-21 includes energy

scattered out of, as well as into, the specular direction. If only energy

scattered out of the specular direction were included, then

(0) -1) (1) 2
AR = y(o) (Yl) + Y ) E /2 (partial scattering) (4-23)

EIGENVALUE PERTURBATIONS AND PROPAGATION LOSS RATES

If the above equivalent matrix is used, a separate eigenvalue search is

required for each value of e or d. This eigenvalue search is extremely time-

consuming. An eigenvalue perturbation method, therefore, will' be utilized

that, to the same degree of accuracy, will permit the rapid calculation of the

1m(E) for any set of (E,d), once the 4m(O) has been found.

For a small roughness amplitude c, the eigenvalues of p : (E),

corresponding to the O-th order Floquet mode, satisfy S(O)(i,6) = 0 and may be

expanded as

Pm : (0) + APm  (4-24)

where (Reference 1-10)

4-8



ECAC-TR-88-O01 Section 4

s(O)/s (0 ) 6 (4-25)

Using Equation 4-15 with

D(O)(o) = 0 when ( 0m() (4-26)

in Equation 4-25 yields

ALm  J(mK) E 2 (4-27)

where

j(m,.) [Da (0)  / (4 D (
0 ))] [Da(-')/D(- ) + Da (1)/D( 1 )] (4-28)

Each of the determinants in this equation is evaluated at P = Pm(0), 6 = E = 0.

The Pm(E) resulting from the use of Equation 4-27 with Equation 4-24 can then

be used in the equivalent matrix to obtain Xm and Emo in Equation 2-53. Thus,

once the smooth-earth eigenvalues have been found, the field contributions of

the 0-th Floquet mode can be determined for any combination of E and d without

performing a time-consuming numerical search for the new eigenvalues. The

accuracy of the eigenvalues obtained using this perturbation method is the

same as that obtained using an eigenvalue sear i of the determinant of the

equivalent matrix, since this determinant is itself the result of an expansion

in the same small quantity.

Using the fundamental waveguide mode equation, it was shown that

(Reference 1-10)
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4 =-R / R(0 )  (4-29)
m

where the subscript u indicates partial differentiation with respect to i.

From Equations 4-22 and 4-26, it may be seen that, when m(O),

R U ) = - 2 j y() D(O)(0) / D(O)(4-30)u a

The consistency of Equations 4-29 and 4-27 is demonstrated by substituting

Equations 4-20 and 4-30 into Equation 4-29. Thus, the eigenvalue perturbation

form of Equation 4-27 considers scattering both out of and into the specular

direction. If only scattering out of the specular direction were to be

considered, Equations 4-23 and 4-30 may be used in Equation 4-29 to yield

Aum  j [D(O)(0) / 4D(O)] (y(-1) + 1(1)) 2 (partial scattering)

(4-31)

The rate of loss due to roughness of the m-th mode along the propagation

direction is defined by

LRm = -8.68589 Im(A M ) (dB/km) (4-32)

where AP is in units of km- I. The fact that Avm is proportional to c2 permits

a definition of roughness loss per unit distance per square roughness

amplitude:
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L Sm =10-6 LRm/ 2  = -8.68589 (10-6) Im[J(m K)] (dB/km/m2 )

(4-33)

where c is in meters.

Equations 4-32 and 4-33 can also be used when the Um(c) are found

directly from a search using the determinant of the equivalent matrix. In

that case, Apm  = 'm(C) - Vm(0 ) is used in Equation 4-32, leading to

LSm : -8.68589 (I(-6  Wm(C) - lm(O)]/ 2 (dB/km/m2)

(4-34)

LSm is particularly significant for trapped modes in a surface duct. For

propagation over smooth earth, these modes experience little or no attenuation

in the propagation direction, which accounts for the field enhancement within

the duct (Reference 1I-4). For trapped modes within a surface duct

characterized by a bilinear refractivity profile,

hsm , 1.0857 (10-6) Itan ai ko2 (X/d) (2 - X/d) (dB/km/m2 ), d > X/2

(4-35)

where X and d are in the same units, and kO = mok and tan a, are in units

of km-I1. LSm , as given in Equation 4-35, is always positive. This

demonstrates that the roughness causes attenuation of the trapped modes.

Equation 4-35 is valid for both the complete scattering (see Equation 4-27)

and the partial scattering (see Equation 4-31) situations.
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SECTION 5

DISCUSSION AND RESULTS

To illustrate the effects of the roughness on the modes of propagation,

plots are provided in Figure 5-1 of LSm as a function of the roughness spatial

period d for the two trapped modes that are obtained when the surface duct

refractivity profile of Figure 5-2 is used. LSm in these plots is calculated by

two methods: the eigenvalue perturbation method using Equation 4-33 and the

equivalent determinant method using Equation 4-34. A frequency of 6.814 GHz is

used, corresponding to X = 4.4 cm. This figure shows that the eigenvalue

perturbation results for the two trapped modes are identical, consistent with

the usage of Equation 4-35, which is independent of the index m and which was

originally derived from eigenvalue perturbation results. Indeed, the eigenvalue

perturbation plot for the trapped modes is virtually identical with the closed

form prediction of Equation 4-35.

It is emphasized that the trapped mode results shown in Figure 5-1 are

unique to a surface duct. Values of LSm for trapped modes in an elevated duct

were found to be several orders of magnitude lower, as would be expected since

the ground roughness would not influence trapped mode propagation in an elevated

duct.

A discrepancy is obvious in Figure 5-1 between the eigenvalue perturbation

and the equivalent matrix results for the trapped modes as d/X decreases. This

corresponds to an increase in the size of the expansion parameter AR, as noted

in the discussion following Equation 4-20. Although the two methods provide the

same degree of accuracy, both are valid only for small values of the expansion

parameter. Beyond this region of validity, there is no reason to expect the

results of each method to be similar. The closeness of AR to zero, or the

closeness of R to -1, thus provides an indication of the accuracy of the

expansion. Figure 5-3 illustrates the complex value of R for the lowest order

trapped mode, for e = 0.1 m and various values of d/X. The correlation between

the distance of the R values from -1 and the divergence of the results of the

two computational methods is obvious.
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Figure 5-3. The effective reflection coefficient of sinusoidal
ground for amplitude e = 0.1 m, frequency =6.8114 GHz
for different values of d/k.
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Predictions of the field relative to free space, using the four lowest

order modes, are shown in Figure 5-4 for a 6.814 GHz radio wave propagating

within the duct defined by the refractivity profile of Figure 5-2. They are

illustrated as a function of observer height at a distance 66.7 km from the

source for propagation over smooth earth and for three methods of computation

for propagation over the sinusoidal rough earth: (1) the equivalent matrix

method using the entire reflection coefficient correction, (2) the eigenvalue

perturbation method using the entire reflection coefficient correction (i.e.,

Equation 4-27), and (3) the eigenvalue perturbation method using the partial

reflection coefficient (i.e., using Equation 4-31). The rough earth is

characterized by e = 0.1 m.

For the predictions in Figure 5-4a, the source height ZT = 29 m and

d = 10 m, while in Figure 5-4b, d = I m with the same source height. In both

figures, there is good agreement between the predictions obtained using

methods (1) and (2). The discrepancy between these predictions and the

partial reflection predictions is greater for the smaller value of d. Since

the source is well above the duct, only the leaky mode contributes to the

field. This mode is the third of the lowest order modes, thereby explaining

the three peaks in the plots.

In Figure 5-4c, zT z 5 m and d = 10 m. Since the entire contribution is

now due to trapped modes that are the two lowest order modes, only two peaks

are apparent in the plots. Here, there does not appear to be good agreement

between any of the rough-earth results. Figure 5-4d is the comparison of the

power sum results (Equation 4-7). Agreement in this figure, as well as the

fact that the LSm in Figure 5-1 for each method is virtually identical,

indicates that a major source of the problem is due to the relative phase of

each mode. When the modal contributions are added without considering their

phase, the agreement between the two complete reflection coefficient results

improves except near the null.
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Figure 5-4. Field relative to free space within duct of Figure 5-2

f z 6.814 GHz, I x I = 66.7 kin, over smooth earth and

over sinusoidal rough earth, E Z 0.1 M. (Page 1 of 2).
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SECTION 6

SUMMARY

A method has been described for obtaining the effect of small sinusoidal

roughness on horizontally polarized waves that are propagating in a surface

duct situated over large distances in a horizontally homogeneous atmosphere.

The method includes energy scattered out of, as well as into, the specular

direction of modes of the corresponding smooth-earth waveguide.

It was shown that an eigenvalue perturbation scheme is as accurate as

directly obtaining the eigenvalues from the equivalent matrix but requires

much less computation time. The relationship between the two methods has been

detailed, and the eigenvalue perturbations, as well as roughness loss rates,

have been shown to be consistent with results obtained using a rough-earth

form of the fundamental waveguide mode equation.

The methods documented in this report are a first step toward developing

a mathematical model of propagation under the given conditions. They can be

considered a research model applicable to a limited set of circumstances.

Further work is needed to extend the model and make it more widely applicable.
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